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Abstract

A spherically symmetric charge distribution is a useful, first-order model of a charged
insulating particle, such as a toner particle used in electrostatic imaging technologies. The
electrostatic force of adhesion between a spherically symmetric charge distribution in contact
with a conductive ground plane is derived using the method of images. Finite element analysis
is used, with the uniformly charged sphere of charge Q modeled with K charge points, each of
which has a charge of magnitude @Q/K. Both a closed form solution and a numerical
calculation are used to derive the total force. It is found that the electrostatic image force
acting on the few charge points located in proximity to the conductive plane (the proximity
charge) is comparable to the electrostatic force acting on a single charge point of magnitude Q@
located in the center of the sphere. This is a surprising result since it is conventionally assumed
that a spherically symmetric charge distribution can be modeled by a single charge point Q
located in the center of the sphere. However, this assumption is only valid at distances far from
any conductive planes. When all pairs of charge points and their charge images are considered,
the total electrostatic force acting on a sphere of charge Q in contact with a conductive plane is
larger than the conventionally assumed electrostatic image force by a correction factor (1 +
4/m). The additional force, that we call the proximity force which is primarily due to the
proximity charge (the 4/n term), is independent of the number of K charge points assumed,
suggesting it is model independent at contact. The proximity force’s functional dependence on
the separation between the bottom of the charged sphere and the conductive plane depends on
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the distribution of the charge points near the contact point. Implications of the existence of the
electrostatic proximity force are discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the electrostatic force of adhesion acting on a charged insulating
sphere in contact with a conductive plane has important applications in many
different fields such as electrophotography, semiconductors, atomic force micro-
scopy, and micro-tribology. For example, in electrophotography, a tribolectrically
charged toner particle must be efficiently developed on a photoreceptor and
transferred to paper using electric fields [1]. The Coulomb force (the charge times the
electric field) must overcome the toner adhesion [2,3]. In the fabrication of
semiconductor devices, removal of electrostatically adhering micron-sized contami-
nants can be critical to their functionality. In studies with the atomic force
microscope unexpected adhesion forces have been observed in force-displacement
curves [4-6]. Adhesion forces between materials during contact and rubbing can be
caused by the buildup of charge on either surface.

The purpose of this paper is to examine a theoretical model of the adhesion of a
uniformity charged sphere to a conductive plane, one of the components of
adhesion. People often assume that a spherically symmetric charge distribution can
be equivalently replaced with a single point charge in the center of the sphere. This is
true only in the case of an isolated sphere. It relies on spherical symmetry to apply
Gauss’ Law. However, in the situation in which the spherically symmetric charge
distribution is in contact with a conductive plane, the spherical symmetry no longer
exists and no simple integral can be found to apply Gauss’s Law. Since the
conductive plane is an equipotential, the method of images can be used. We use finite
element analysis to convert the spherically symmetric distribution into a uniform
distribution of charge points and locate the images below the conductive plane by the
usual method. Then we let the number of charge points go to infinity. We will show
that the simple model (which assumes that the spherically symmetric charge
distribution can be replaced by a point charge in the middle of the sphere even when
it is in contact with a conductive plane) underestimates the force of adhesion because
it ignores the force due to the charges in the proximity of the conductive plane.

2. Theory
We model a spherically symmetric charge distribution using a finite element

analysis both analytically and with numerical calculations. The procedure allows us
to substitute a continuous function of surface charge density with a set of discrete



W.S. Czarnecki, L.B. Schein | Journal of Electrostatics 61 (2004) 107115 109

charge points such that the total charge magnitude is conserved. This procedure is
well known in the field of finite element methods, where distributed body forces,
tractions (surface forces distributed over a finite area such as frictional or constrain
forces), and masses are allocated among the nodes of the elements. Among many
different possible distribution techniques, there is a particular arrangement of charge
points along a set of annuli parallel to the conductive plane that facilitates
a derivation of a closed form solution for the electrostatic forces. In Fig. 1 the
total number of annuli on the sphere is N. The dots on the annuli show the
arrangements of charge points on a sphere of radius R resting on the conductive
plane at z = 0. The charge points are chosen using polar coordinates to maintain
a constant arc length RA¢ between charge points in the two orthogonal directions.
Therefore, the vertical angle between two adjacent annuli, A¢, is simply given
by n/N. Since, the circumference of each annulus is different, they each hold a
different number of charge points. The number of charge points for the ith annulus is
given by

ki =2Nsin(ni/N +n/2N), i=0,..,N—1, ()

Fig. 1. Sphere with points of charge.
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where the expression in parenthesis is the latitude angle of annulus i. Eq. (1) is
derived by dividing the circumference (2nR sin(iA¢ + A¢/2)) by the arc length RA$
where A¢ = n/N. The total number of charge points, K can be derived by summing
of the charge points all of the annuli

N—-I| N 4N2
K=Y ki=2N / sin(nx/N) dxx— )

=0 0
or by dividing the total surface area of the sphere by the area that a charge point
occupies (Rn/ N)2. The charge g in each charge point is the total charge on the sphere
Q divided by the number of charge points K

Q QOn

1=K~ anz ®
For example, a sphere of charge Q = 12 fC that is subdivided with N = 90 annuli
will have K = 10,313 charge points, each with a charge ¢ = Q/K = 1.16 x 1078 C,
or about 7 electrons per charge point.

The number of charge points on the first annulus nearest the conductive plane is

given, in the limit for a large N, by

ko = 2N sin(n/2N)= 7. 4)
The plane of the ith annulus crosses the z-axis at
n mi .
Ai—R[l“COS(m"’“ﬁ)], i=0,..,N—1L %)

Using the first two terms of the Taylor series expansion, the separation, zg of the
first annulus from the reference plane z = 0 is given by
Ry w2
0 E(zzv) ‘ ©)
(For R =6 um and N = 180, zp = 2.3 A, which is as close as two materials are ever
assumed to approach each other [7].)

Consider the electrostatic forces due to the interactions between the charge points
located in proximity to the conductive plane (which are on the first annulus) with
their image charges located symmetrically across the conductive plane. Using
Coulomb’s law, the force on a single charge point ¢ in the first annuli due to its own
image charge point F|; (the attractive forces can be expressed by the elements of a
rank 2 matrix [Fj], where index i refers to a charge point in an annuli and index j
refers to an image charge point) located symmetrically across the conductive plane
can now be derived, using Egs. (3) and (6), in a closed form by

1 & 1 Q@ 4

- 4ney (220)2 - 47ey (ZR)2 72 ™

Fy

The functional dependence of ¢ and zy on the number of annuli N as given by
Egs. (3) and (6) cancels out. Since there are approximately 7 charge points in the first
annuli (Eq. (4)), the contribution to the electrostatic force by these charges, which we
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will call the proximity force F, is

1 Q4

Fy=nF=——2_2
p =00 4neg 2R 1

®)

This is a remarkable result since only a few point charges with a fractional charge
g, which are located in the vicinity of the contact point can generate an attractive
force 1.27(4/n) times greater than a charge point of charge Q located at the center of
sphere. We note that this result is independent of the number of annuli, N, in the
limits of large N, which suggests that this result is independent of the particular
charge distribution chosen for this calculation.

In principal, all of the other image charges contribute to forces on the charges in
the first annuli, which are identified as F», Fi3, etc. However, for a large N, the
separation 2zg is small compared to the distance to all other charge points. The
closest image charges are those due to the charges in the second annuli (z,) which are
easily shown to have negligible contributions since z,/zo = 9.

Since the number of point charges considered in the proximity annulus is much
smaller than the total number of charge points, i.e. kg <K, the rest of the charge
points can still be considered as a complete sphere of charge. This can be modeled by
the usual method of placing a single charge in the center of the sphere, giving for the
force for the bulk charge F

1 2
F=— 2 .
4mey (2R)

®

The sum of the electrostatic forces due to the bulk of charges Q from Eq. (9) and due
to the proximity charges from Eq. (8), is

1 4
F = = — - 1
Fo+ Fy = 2 (1 + n) (10)

which has a new factor (1 + 4/x). This is 2.27 times greater than the force calculated
by the simple image model. This simple derivation shows that a closed form solution
for the electrostatic force of a spherically symmetric charge distribution in contact
with a conductive plane can be derived in a straightforward way and provides a
useful and universal result.

3. Numerical Calculations

A numerical calculation was carried out to support the analytical derivation of the
electrostatic image forces. As before, the assumption is made that the charge on the
surface of a uniformly charged sphere can be lumped with K point charges.
Two parameters were varied, the number of annuli N and the separation s between
the bottom of the sphere and the conductive plane. The force of attraction is given
by the double sum of the force of attraction of all the charge points to all of the
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image charges

F=— g I
dney Z Z 9i4; 7 3 ( )

i
i

Index i is assigned to the point charges and the index j assigned to the image point
charges. The position vectors r define the location of the charge points from the
center of a Cartesian coordinate system coinciding with the contact point. The image
force F in Eq. (11) can be normalized with the bulk force Fp, giving F/F, which we
will call the correction factor. The correction factor is plotted against the separation
distance s in Fig. 2 for the number of annuli N = 40, 90 and 180. At a separation
distance s larger than 50 nm, the electrostatic force exerted on a spherically
symmetric sphere of charges is well represented by the conventionally assumed value
(Eq. (9)), i.e. the correction factor is equal to one. On the other hand, at a separation
distance s smaller than 50 nm, Eq. (9) does not equal the total electrostatic force and
the ratio F/Fy diverges from the value of 1 depending on the number of annuli N,
which determines the precise locations of the point charges. However, all force
curves converge to the same value (1 + 4/m) at contact, independent of the number
of annuli. This result is in excellent agreement with the general analytical result,
Eg. (10).

Note from Fig. 2 that values of s at which this new proximity force is active
depends on the assumptions in the model, i.e. the number of annuli assumed. This
suggests that the observation of this force as a function of gap will depend on the
details of the actual charge distribution in the proximity of the contact. If we assume
the proximity force can be observed when it is 10% of the bulk force, then it is easily
shown (by replacing zo in Eq. (7) with zp + 510 and equating 7 times the force to 0.1
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Fig. 2. Correction factor to the electrostatic force normalized to F, vs. separation distance s between the
sphere and the conductive plane, and N, the number of annuli, for a 6 pm radius sphere. The curves are for
N =40, 90, and 180.
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times Eq. (9)) that the gap s, at this point is

2
S10 = (,/%— 1)%’%. (12)

Using Eq. (2), Eq. (12) becomes

R 40 n R
= — — = 1]==4.0—. 1
S10 K(V . )2 40]( (13)

Noting that charge is quantized so that X cannot be larger than Q/e, where e is the
electronic charge, the minimum s is 4Re/Q. This is 3.2 A for a fully and uniformly
charged electrophotographic toner particle (Q =12 fC and R = 6 um, which is
about 12 uC/g) but is 320 A for a particle charged with clusters of 100 electrons per
charge point.

4. Discussion

Assuming that a spherically symmetric charge distribution can be modeled as a set
of distributed charge points, we have shown that the electrostatic force on the sphere
in contact with a conductive plane has two components: (1) one due the bulk charges
which can be calculated by replacing the sphere with its charge in its center and (2) a
newly derived component due to the charges in proximity to the plane. The
proximity force is larger than the bulk force component by a factor 4/n. The total
electrostatic force acting on a sphere with a spherically symmetric charge distribution
in contact with a conductive plane has a correction factor (1 +4/n) as compared
with the conventionally used formula.

We have shown this result both analytically and numerically. In both cases the
magnitude of the force calculated when the sphere contacts the plane is in excellent
agreement for sufficiently large number of annuli. The fact that our result is
independent of the details of the model, i.e. the number of annuli, suggests that this
result is general. Further, we can physically identify the source of the proximity
force: it is due to the charges in closest proximity to the contact point.

In contrast, the gap s at which this new proximity force is active depends on the
number of annuli assumed, i.e. the details of the model. This suggests that the
observation of the proximity force will depend on the details of the charge
distribution in the vicinity of the contact. The shape of the force function in the pre-
contact region for a separation distance less than 50 nm may give an important clue
about the magnitude and the distribution of charges in the proximity of the contact
point. For example, a sharp increase of force by a factor 1 + 4/n within a few nm
prior to contact (consistent with Eq. (13)) might indicate a very uniform surface
charge density. Alternatively, an experimental observation of a force increase at
much larger separations might be interpreted as patches of charge which are
multiples of the elementary electronic charge.
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This new force may account for observations of forces on particles observed in
force microscope experiments in which an unexpected and unexplained force of
shorter range than electrostatic but longer range than van der Waals was observed
[4-6]. For example, in one of these experiments a charged polystyrene sphere was
brought in close proximity to a conducting plane [5]. At close distances, the force
observed could be quantitatively accounted for by van der Waals force. But beyond
10 nm, the force observed was much larger than could be accounted for by van der
Waals force but was also much larger than could be accounted by the standard
electrostatic image force. The proximity force proposed here can account for the
force in this region [4]. In Refs. [5,6] it is suggested that the unexpected force is due to
a localized charge patch near the point of contact. However, as the authors
themselves point out this leads to a dilemma (in their words): the electric field due to
the postulated localized charge patch exceeds the electric field that air can support by
an enormous factor, roughly 170. Accounting for the data with the proximity force
eliminates this dilemma.

Extensive discussions exist in the literature attempting to identify whether the
dominant force of adhesion on insulating particles is due to electrostatic forces, with
uniform or nonuniform surface charge distributions, or van der Waals forces [2,3).
We suggest that insulating particle adhesion in general, and toner particle adhesion
(in electrophotography) in particular may be largely due to the proximity force.
Consider that real particles are not perfect spheres. They have many contact points
with a conductive plane. Assume that at every contact point the proximity force is
active. In this case the proximity force could dominate the other forces of adhesion
that have so far been considered in the literature and therefore may be able
to explain the large toner adhesion forces reported in the literature [2] without the
need to assume nonuniform charge distribution or unusually large van der Waals
forces [8).

Acknowledgements

The authors would like to acknowledge Bobo Wang for support and encourage-
ment, Randy Sanders, Jack Pei, and Dave Stockman for their encouragement, and
Randy Sanders and Joe Crowley for comments on the manuscript.

References

{1] L.B. Schein, Electrophotography and Development Physics, Laplacian Press, Morgan Hill, CA, 1996.
[2] D.A. Hays, J. Adhesion 51 (1995) 41.
(3] D.S. Rimai, D.J. Quesnel, Fundamentals of Particle Adhesion, Polymer Surface and Interface Series,
Global Press, 2001;
B. Gady, D.J. Quesnel, D.S. Rimai, S. Leone, P. Alexandrovich, J. Imaging Sci. Technol. 43 (1999)
288;
D.S. Rimai, P. Alexandrovich, D.J. Quesnel, J. Imaging Sci. Technol. 47 (2003) 1.



W.S. Czarnecki, L.B. Schein | Journal of Electrostatics 61 (2004) 107-115 115

[4] W. Stanley Czarnecki, L.B. Schein, Electrostatic proximity force identified, Phys. Rev. Lett., submitted
for publication.

[5] B. Gady, D. Schleef, R. Reifenberger, D. Rimai, L.P. DeMejo, Phys. Rev. B 53 (1996) 8065.

[6] B. Gady, R. Reifenberger, D. Rimai, L.P. DeMejo, Langmuir 13 (1997) 2533.

{71 C. Kittel, Introduction to Solid State Physics, 3rd Edition, Wiley, New York, 1966, pp. 83, 84.

[8] L.B. Schein, W. S. Czarnecki, Theory of toner adhesion, J. Imaging Sci. Technol., submitted for
publication.






