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Abstract

Measurements, using atomic force microscopy, of the force and force derivative on a charged insulating micron sized sphere
as a function of gap between the sphere and a conductive plane have revealed attractive forces at finite gaps that are larger than
predicted by either van der Waals or conventional electrostatic forces. We suggest that these observations may be due to an
electrostatic force that we have identified theoretically and call the proximity force. This proximity force is due to the discrete
charges on the surface of the sphere in close proximity to the plane.
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Understanding the electrostatic force of attraction
of an insulating sphere to a conductive plane is of
importance in many different fields including atomic
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force microscopy, semiconductor surface contamina-
tion, particle adhesion, and electrophotography. For
example, in studies with atomic force microscopes,
forces have been observed on charged insulating
spheres near conductive planes at finite gaps that are
larger than predicted by van der Waals or conven-
tional electrostatic forces. In order to explain these
forces unusual localized charge patches or work func-
tion anisotropies have been postulated to account for
the data [ 1-3]. The purpose of this Letter is to examine
a theoretical model of the attraction of a discrete dis-
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tribution of charge points that are symmetrically dis-
tributed around a sphere in contact with a conductive
plane [4]. This result is then applied to atomic force
microscopy experiments in which forces on charged
insulating spherical particles are characterized as a
function of the spacing between the sphere and the
plane.

It is often assumed in electrostatic calculations that
a charged insulating particle can be modeled as a
spherically symmetric charge distribution which can
be equivalently replaced with a single point charge in
the center of the sphere. This is true only in the case of
an isolated sphere. It relies on spherical symmetry to
apply Gauss’ law. However, in the situation in which
the quantized nature of the charge is taken into account
and the sphere is in contact with a conductive plane,
the spherical symmetry no longer exists and no sim-
ple integral can be found to apply Gauss’ law. Since
the conductive plane is an equipotential, the method of
images can be used. We use finite element analysis to
model the charged insulating particle by a uniform dis-
tribution of charge points equally spaced along equally
spaced annuli and locate the image charges below the
conductive plane by the usual method (see Fig. 1). We
will show that the conventional model (which assumes
that the charged insulating particle can be replaced by
a point charge in the middle of the sphere, even when
it is in contact with a conductive plane) underestimates
the force of attraction because it ignores the force due
to the charges in the proximity of the conductive plane.

We model a charged insulating particle using finite
element analysis both analytically and with numeri-
cal calculations. The charges are lumped into charge
points along a set of N equally spaced annuli paral-
lel to the conductive plane. This allows a derivation
of a closed form solution for the electrostatic forces.
Assume the charge points are on a sphere of radius R
resting on the conductive plane at z = 0. The charge
points are chosen using polar coordinates to maintain a
constant arc length RA¢ between charge points in the
two orthogonal directions. The vertical angle between
two adjacent annuli, A¢, is given by 7 /N. Since the
circumference of each annulus is different, they each
hold a different number of charge points. The number
of charge points for the ith annulus is given by

ki=2Nsin[ &4 = i =0,...,N—=1, ()
T N 2N ) 1= gy )

Fig. 1. A sphere with charge points and its image charges. The
charge points are arranged along annuli such that the distance be-
tween annuli and charge points is the same. For any area on the
sphere that includes at least one charge point, the charge per unit
area is the total charge on the sphere divided by the total area of the
sphere.

where the expression in parenthesis is the latitude an-
gle of annulus i. The /2N term maintains the correct
charge density (the total charge Q divided by the area
of the sphere) in the tip of the sphere adjacent to the
contact point. The total number of charge points, X
can be derived by summing the charge points of all the
annuli

Nl 7 TX 4N?
K= Z;ki=2N/sin<7v—)dx=—n— )
1= 0

or by dividing the total surface area of the sphere by
the area that a charge point occupies, (Rx/N )2. The
charge g in each charge point is the total charge on the
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sphere Q divided by K

Q_ Qn

= == 3
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The number of charge points on the first annulus near-
est the conductive plane kg is given, in the limit for

large N, by

W
ko=2N sm(ﬁ) R T, €]

The plane of the ith annulus crosses the z-axis at
,N—1.

n i
Zi=R[]—COS(m+F)], l=0,
%)

Using the first two terms of the Taylor series expan-
sion, the separation zp of the first annulus from the
reference plane z = 0 is given by

_5(1)2 ©
w=F\N /)

Consider the electrostatic forces due to the interac-
tions between the charge points located in proximity
to the conductive plane (which are on the first annulus)
with their image charges located symmetrically across
the conductive plane. Using Coulomb’s law, the force
on a single charge point ¢ in the first annulus due to its
own image charge point F}; (the attractive forces can
be expressed by the elements of a rank 2 matrix [Fj;],
where index i refers to a charge point in an annuli
and index j refers to an image charge point) located
symmetrically across the conductive plane can now be
derived, using Egs. (3) and (6), in a closed form by

1 g 1 Q? 4
" 4meg (220)2  4meo QR)2 w2
Note that the functional dependence of ¢ and zp on
the number of annuli N as given by Eqgs. (3) and (6)
cancels out. Since there are approximately m charge
points in the first annuli (Eq. (4)), the contribution to
the electrostatic force by these charges, which we will
call the proximity force F), is:

1 Q% 4
Ameg QR
This is a remarkable result. Only a few point charges

with a fractional charge ¢, which are located in the
vicinity of the contact point, can generate an attractive

M
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force 1.27 (i.e., 4/m) times greater than a charge Q
located at the center of sphere. We note that this result
is independent of the number of annuli, N, in the limits
of large N.

In principal, all of the other image charges con-
tribute to forces on the charges in the first annuli,
which are identified as Fy3, Fi3, etc. However, for a
large N, the separation 2zg is small compared to the
distance to all other charge points. The closest image
charges are those due to the charges in the second an-
nuli (z)) which are easily shown to have negligible
contributions since z; /z¢9 = 9.

Since the number of point charges considered in
the proximity annulus is much smaller than the to-
tal number of charge points, i.e., kg < K, the rest of
the charge points can still be considered as a com-
plete sphere of charge. This can be modeled by the
usual method of placing a single charge in the center
of the sphere, giving for the force for the bulk of the
charges Fj,

1 Q2

"= a0 QR? ®

The total electrostatic force F is sum of the electrosta-
tic forces due to the bulk of the charges Q (Eq. (9))
and the proximity charges (Eq. (8)),

1 Q? 4
F—Fb+Fl)—m6'('iR—)2(l+n), (10)
which has a new factor (1 + 4/m), compared to the
conventional result (Eq. (9)). This simple derivation
shows that a closed form solution for the electrostatic
force of a discrete distribution of charge points that are
symmetrically distributed around a sphere in contact
with a conductive plane can be derived in a straight-
forward way and provides a useful and universal result
that allows a physical interpretation of the 4/ term.

A numerical calculation was carried out to support
the analytical derivation of the electrostatic proxim-
ity forces. As before, the assumption is made that
the charge on the surface of a insulating sphere can
be lumped into K charge point. Two parameters were
varied, the number of annuli N and the separation s
between the bottom of the sphere and the conductive
plane. The force of attraction is given by the double
sum of the force of attraction of all the charge points
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Fig. 2. Correction factor to the electrostatic force normalized to Fp
vs. log of the separation distance s between the sphere and the con-
ductive plane, and N, the number of annuli, for a 6 micron radius
sphere.

to all of the image charges

4n602}:q.qjl — |3 (11)

Index i is assigned to the point charges and the index
j assigned to the image point charges. The position
vectors r define the location of the charge points from
the center of a Cartesian coordinate system coinciding
with the contact point. The image force F in Eq. (11)
can be normalized with the bulk force F, giving F/Fp
which we will call the correction factor. The correc-
tion factor is plotted against the separation distance s
in Fig. 2 for the number of annuli N =40, 90 and 180.
At a separation distance s larger than 50 nm, the elec-
trostatic force exerted on a uniformly charged sphere is
well represented by the conventionally assumed value
(Eq. (9)), i.e., the correction factor is equal to one. On
the other hand, at a separation distance s smaller than
50 nm, Eq. (9) does not equal to the total electrostatic
force and the ratio F/F diverges from the ratio of 1
at a rate depending on the number of annuli N, which
determines the precise locations of the point charges.
However, all force curves converge to the same value
(1 + 4/m) at contact, independent of the number of
annuli. This result is in excellent agreement with the
general analytical result, Eq. (10).

This correction factor has interesting mathemati-
cally characteristics. Depending on the order in which
N goes to infinity (which represents a uniform distrib-

F=

ution) and s goes to zero, the correction factor goes to
either 1 or 1 + 4 /5. However, for any finite N, the cor-
rection factor goes continuously to 1 +4/7 at s =0
as the gap is reduced (see Fig. 2). Physically only fi-
nite N is meaningful because charge is quantized. For
the example in Fig. 2 (which assumes a 6 micron di-
ameter particle) for @ = 12 {C at N = 180 there are
41000 charge points and 2 electrons per charge point.
zo (Eq. (6)), the distance from the charge point to the
conductive plane, is 0.23 nm.

The gap at which the proximity force can be de-
tected can be derived. Note from Fig. 2 that values
of s at which this new proximity force is measur-
able depends on the assumptions in the model, i.e., the
number of annuli assumed. This suggests that the ob-
servation of this force as a function of gap will depend
on the details of the actual charge distribution in the
proximity of the contact. If we assume the proximity
force can be observed when it is 10% of the bulk force,
then it is easily shown (by replacing zo in Eq. (7) with
z0 + s10 and equating this to & times this force to 0.1
times Eq. (9)) that the gap sio at this point is

[40 Rn?
S10=( ?—-I)W (12)

Using Eq. (2), this becomes

R{ [40
s10=E<\/;—1)2—40— (13)

Noting that charge is quantized so that N is finite and
K cannot be larger than Q /e, where e is the electronic
charge, the minimum sj¢ is 4Re/Q. This is 0.32 nm
for a uniformly charged particle with radius of 6 mi-
crons and charge of 12 fC but is 32 nm for the same
particle charged with clusters of 100 electrons per
charge point. (Strictly speaking, Q can be a fraction
of e which occurs in some semiconductor surface elec-
tronic charge distributions.) By comparing s19 to 2o it
can be seen that the proximity force is active (equal
to 10% of the conventional force) at gaps approxi-
mately equal to the spacing between the charge and the
ground plane if the charges are uniformly distributed
on the surface of the sphere. A non-uniform distribu-
tion significantly increases the range of the proximity
force.

These results are valid even if the distribution of
charge points is changed. The charge point distribu-
tion that we chose gives a good estimate of the prox-
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imity force, independent of the detailed distribution
of the charge points. For N = 180 (Fig. 2), there are
2 electrons (g) in each of the 7 charge points spaced
(z0) 2.3 A from the conductive plane. Another distri-
bution, which one might think maximizes this prox-
imity force, could be constructed by starting with one
electron positioned at the point of contact between the
sphere and the plane. Using Eq. (9) to quantify this
force, and using a reasonable semi-classical estimate
of the closest approach of two materials, 2.5 A, giving
zo = 1.25 A (used to estimate the magnitude of the van
der Waals forces in standard solid state textbooks [51),
this proximity force is actually less; it would be com-
parable only at zg = 0.65 A.

We have shown both analytically and numerically
that the electrostatic force on a charged insulating
sphere in contact with a conductive plane has two com-
ponents: (1) one due the bulk charges which can be
calculated by replacing the charged sphere with its
charge in its center and (2) a newly derived component
due to the charges in proximity to the plane which is
larger than the bulk force component by a factor 4 /7.
The fact that our result is independent of the details
of the model, i.e., the number of annuli or the detailed
distribution of the charge points, suggests that this re-
sult describes an additional electrostatic force on any
charged insulating particle which has not been identi-
fied previously. Further, we can physically identify the
source of the proximity force: it is due to the charges
in closest proximity to the contact point.

The gap s at which this new proximity force is
measurable depends on the number of annuli assumed
(Fig. 2), ie., the details of the charge distribution
model in the vicinity of the contact. Conversely, the
shape of the force function in the pre-contact region
for a separation distances less than 50 nm may give an
important clue about the magnitude and the distribu-
tion of charges in the proximity of the contact point.
For example, a sharp increase of force by a factor
1 +4/n within a few tenths of a nm prior to contact
(consistent with Eq. (13)) might indicate a very uni-
form surface charge density. Alternatively, an experi-
mental observation of a force increase at much larger
separations (such as observed in Refs. [1-3], see be-
low) might be interpreted as a uniform distribution of
clusters of the elementary electronic charge.

In a series of papers Gady et al., e.g., Refs. [1,2],
and others [3,6,7] have convincingly shown in atomic

force microscopy measurements using charged insu-
lating particles that are brought into close proxim-
ity with a conductive plane, that there exists an at-
tractive force between the insulating particle and a
conductive plane that is larger than predicted by van
der Waals or conventional electrostatic forces at fi-
nite gaps. Prior attempts to understand these results
required postulating unusual localized charge patches
[1,2] or work function anisotropies [3] whose para-
meters could not be independently verified. For exam-
ple, Ref. [1] describes force microscopy with charged
polystyrene spheres. To account for these data a lo-
calized charge patch with a charge density o of ap-
proximately 80 nC/cm? was assumed to be created by
prior contacts at the contact region, despite the fact that
this particle was already charged (with a charge den-
sity of 1 nC/cm?). We are pointing out that there is
no need to assume a localized charge patch that has
never been directly observed on an already charged
particle. The proximity force discussed here can ac-
count for these data. In Fig. 3(a) of Ref. [1] the van
der Waals force can quantitatively account for the data
at gaps less than 10 nm. But at and above 20 nm, the
observation is larger than can be accounted for by ei-
ther van der Waals or conventional electrostatic forces
(Eq. (9)). But as can be seen in our Fig. 2, at 20 nm
there are significant contributions to the force (and
force derivative) by the proximity force which exceeds
the contribution due to Eq. (9), with the magnitude
depending on N, the number of annuli assumed, i.e.,
the charge distribution, and the charge on the parti-
cle.

Quantitative comparison of the data given in
Ref. {1] and the proximity theory (derived from ta-
bles of values from which Fig. 2 is plotted to obtain
the derivatives) gives values close to the values ob-
served in Fig. 3(a) and (b) of Ref. [1] and, perhaps
more significantly, reproduces the change in observed
force derivative as the gap is changed for reason-
able values of the parameters. At 20 nm, based on
Eq. (8) and Table I from Ref. [1], we estimate the
van der Waals force derivative is 2 x 107% CV/cm?.
The conventional electrostatic force (our Eq. (9)) is
2 x 1078 CV/cm?, much too small, as the authors
pointed out. Another force is needed to account for
the data. We estimate the proximity force derivative
at N=40is 1.3 x 1077 CV/cm? at 20 nm for the
charge per unit area given. Actually this corresponds
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to a charge to mass ratio of only 8.3 pC/g for a 6 mi-
cron particle, a very unusual low value. If the charge
is assumed larger by a factor of 4, the proximity force
derivative exactly matches the observed data. Even
more significant, the data indicates that the observed
force derivative decreases by about a factor of 3 from
gaps of 20 to 32 nm. The proximity force derivative
decreases by exactly this amount (independent of the
absolute value of the charge).

Experiments in which both the force and force gra-
dient between a 3 micron diameter polystyrene sphere
and a grounded highly oriented pyrolytic graphic sub-
strate were reported by Gady et al. in Ref. [2]. Again
a localized charge patch is postulated to account for
the force data which are observed to be larger than
can be accounted for by van der Waals forces or
by Eq. (9) at finite gaps. As the total charge on the
polystyrene sphere is not reported, quantitative com-
parison of the data with the proximity force cannot
be done. But the close resemblance of the data to
the data of Ref. [1] suggests that the proximity force
also can account for these data. In addition, the au-
thors themselves recognize that the localized charge
patch model has a significant “dilemma” (to use their
word): the electric field o/2gg due to the postulated
localized charge patch (500 V/um) exceeds the elec-
tric field that air can support by an enormous factor,
roughly 170 (using the usual value for Paschen break-
down of 3 V/um for macroscopic distances). Account-
ing for the data with the proximity force eliminates this
dilemma.

There are many other examples in the literature of
atomic force microscopy involving insulators, of the
observation of unexplained forces which the proximity
force could explain. For example, in Ref. [3], measur-
able attractive forces are observed between a nomi-
nally uncharged 300 nm diamond tip and a graphite
surface as far away as 4 nm. Van der Waals attrac-
tive forces, using well established parameters, can-
not account for a measurable attractive force beyond
about 0.4 nm in these experiments. Work function
anisotropies were suggested as the origin of these long
range forces. The experimentally observed attractive
force reported in Ref. [3] is just in the range that the
proximity force is observable, assuming a uniform dis-
tribution of charges on the diamond tip and estimates
based on Fig. 2 or Eq. (13). As is well known, it is
very difficult to eliminate charges from an insulating

surface, which can be charged by contact with any
other material throughout its history. For another ex-
ample, in Ref. [8], it is stated that “we also detected a
weak component of the short-range force exhibiting a
longer decay length than expected for purely covalent
forces”. The proximity force could account for this ob-
servation also.

This proximity force also contributes to charge par-
ticle adhesion, i.e., attractive forces at zero gap, and
in some cases can dominate van der Waals forces.
The proximity force needs to be added to the usual
electrostatic and van der Waals forces [9]. Since real
particle have many contact points with a plane and
at each contact point the proximity force can be
active, the proximity force can dominate the other
forces of adhesion. Ref. [9]} describes such a situa-
tion.

In conclusion, an electrostatic force has been iden-
tified, which we have called the proximity force. It is
due to the discrete charges on the sphere which are in
close proximity to the contact plane. In contact with
a conductive plane, a discrete distribution of charge
points that are symmetrically distributed around a
sphere has a proximity force equal to 4/7 times the
conventional force. At finite gaps, the attractive force
between a charged insulating particle and a conductive
plane, as revealed in atomic force microscopy mea-
surements, is larger than predicted by van der Waals or
conventional electrostatic forces. This proximity force
can account for these data.
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